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Abstract. In this paper we propose a new centrality for nodes and motifs by the von Neumann 

entropy, which allows us to investigate the importance of nodes or structural patterns in the view of 

structural complexity. By calculating and comparing similarities of this centrality with classical ones, 

it is shown that the von Neumann entropy node centrality is an all-round index for selecting crucial 

nodes, and able to evaluate and summarize the performance of other centralities. Furthermore, when 

the analysis is generalized to motifs to achieve the von Neumann entropy motif centrality, the 

all-round property is kept, the structural information is sufficiently reflected by integrating the nodes 

and connections, and the high-centrality motifs found by this mechanism perform greater impact on 

the networks than high-centrality single nodes found by classical node centralities. This new 

methodology reveals the influence of various structural patterns on the regularity and complexity of 

networks, which provides us a fresh perspective to study networks and performs great potentials to 

discover essential structural features in networks. 

Introduction 

Networks provide us a useful tool to analyze a wide range of complex systems, including WWW, 

the social structure, the economic behaviors, and the biochemical reactions. Since the 1990s, a great 

number of interdisciplinary studies involving network both in theories and empirical work, have come 

up and developed new techniques and models to shed a light on the complex structure behind the 

particular subjects. 

Till now, most studies on complex network focus on graph theory, which mostly focuses on local 

structure and heuristic strategies such as centrality and modularity, and entropy provides an 

alternative way to measure the global characterization and had won great success in many researching 

fields. The von Neumann entropy (or quantum entropy) has shown great success in qualifying the 

organization structure and levels in networks, and can be applied in networks as an index to quantify 

the network heterogeneous characteristics. Passerini et al. [1] used the normalized combinational 

Laplacian matrix of networks to study the quantum state and von Neumann entropy of networks, and 

proved that the regular graphs and complete graphs have maximum entropy while networks with the 

same number of nodes and edges which contain large cliques have the minimum entropy. According 

to this result the von Neumann entropy could reflect the regularity of networks. 

Recently some new fundamental concepts are proposed to help us understand networks topology 

and predict their functions. In 2002, Alon et al. [2] introduced the idea of motif when they were 

studying the gene network, which is defined as the recurring, significant sub-networks and patterns in 

a network, and it is discovered that the frequencies of some specific motifs in realistic networks are 

much more significant by comparing with random networks [3]. Triangular motifs (Fig. 2(a), 
1 7

3 3M M ), which were obtained in sociogram, are crucial in understanding social network [4]. 

Mangan et al. proved the feed-forward loop (Fig. 2(a), 3

5M ), one of the most significant motif 
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structures, plays a fundamental role in transcription regulation network [5]. J. Honey et al. found that 

in the large-scale cortical network, the structure hubs tend to participate in open bidirectional wedges 

[6] (Fig. 2(a), 3

13M ). Milo et al. found that in a food web the bi-parallel motif (Fig. 2(b)), which 

illustrates two species who prey on a common creature may have one common predator, emerges a lot 

more than in random networks with the same nodes and degrees [3]. These concepts uncover the basic 

building blocks of networks and provide an interpretable view of network structure. 

To analyze data better and understand the inherent structure and organization of networks, we make 

use of the von Neumann entropy to establish a new measurement and apply it with motifs to study the 

centrality. In the following section the von Neumann entropy of networks is introduced, and the von 

Neumann entropy node and motif centrality for networks is defined. These researches extend the 

centrality to the small and regular structure in networks and demonstrate their superior in deciding the 

importance of nodes.  

Node and Motif Centrality Based on the Von Neumann Entropy 

To introduce the von Neumann entropy, we first introduce the Laplacian matrix and the computation 

of von Neumann entropy of networks. Let undirected network ( ),G V E contain nodes set V and 

edges set E . The entry of adjacency matrix A , an n n  matrix, is defined as 1ijA =  if 

( ),i jvv E and 0ijA =  otherwise. Let D be a diagonal matrix with entries the degrees of the 

corresponding nodes. Then, the Laplacian matrix L  could be define as L D A= −  [7]. The Laplacian 

matrix is positive semi-defined [8] since it is diagonally dominant Hermite. The density matrix of 

network G  is defined as ( ) / ( ) ( ) / ( )G L trace D D A trace D = = − . Evidently the density matrix is 

also positive semi-defined. Let 1 20 1n  =     be the n ordered eigenvalues of ( )G . Thus 

the von Neumann entropy of network G , denoted by ( )ES G , is defined as [1][8]: 

1

( ) logE i i

i n

S G  
 

= − ,                                                               (1) 

where log 0  = when 0 = . 

For a subnetwork s in G , let \G s  be the remained network with s  removed. Combining with 

centrality, some preliminary studies on this entropy [9] could be found. The centrality of node v  can 

be defined as the change of von Neumann Entropy with this node removed. Let ( )EC v  denote the von 

Neumann entropy node centrality, which is defined as: 

( ) | ( ) ( ) |E E EC v S G S G v= − .                                                                  (2) 

To further explain and understand the efficiency and all-round feature of EC , we present the 

centralities on two toy networks. The network in Fig. 1(a) is symmetric and node 4 obviously has 

highest betweenness centrality. Removing node 4 will break the network into two components and 

undermine the connectivity of this network. However, when choosing the most significant node in the 

network, betweenness centrality would not lead to the best choice since removing node 3 (or node 5) 

will not only undermine the connectivity, but also destroy the triangular structure on the left (or right). 

In this deciding process, betweenness centrality BC  and degree centrality DC  should work as signs of 

importance at the same time. As shown in the table, the von Neumann entropy centrality performs its 

all-round property and is able to combine the results of BC  and DC  and give out a more reasonable 

and complete result comparing to other centralities.  

The network in Fig. 1(b) is also symmetric where node 1, node 2 and node 3 have the highest 

closeness centrality, and combining with the DC  sort, node 2 and node 3 are regarded to be the most 

significant nodes. When node 2 or 3 got deleted, node 6 or 7 would become a single node and the 

structure of the network would be destroyed greatly, and the von Neumann entropy centrality gets the 
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same conclusion. Since deleting node 4 or 5 has no effect on the connectivity of the whole network 

and they rank lower in closeness centrality 
CC  sort than node 1, it is not natural to understand why 

node 4 and node 5 rank higher than node 1. It can be inferred that the reason is that the remainder 

networks after deleting corresponding nodes are different: when node 1 is deleted, the degrees of 

remainder nodes are (1,1, 2, 2, 2, 2) ; when deleting node 4 or 5, remainder nodes degrees are 

(1,1,1, 2, 2,3) ; the latter is more uneven than the former. As the von Neumann entropy is a measure of 

regularity, deleting node 4 or 5 will lead to larger decreasing in von Neumann entropy, and in EC sort 

node 4 and node 5 rank higher than node 1. This phenomenon supports the idea that the von Neumann 

entropy centrality is a global measure of network regularity and 
EC  could reflect the statuses of nodes 

on the network topological structure. 

 

 

Figure 1. The two toy networks. 

Motifs are defined as small subgraphs and connection patterns that appear in networks frequently 

and they are regarded as the building blocks of complex networks and useful tools to uncover the 

structural design principles of network. The 13 three-node motifs in directed networks are shown in 

Figure 2(a). In undirected networks, there are 2 three-node motifs and 6 four-node motifs, which are 

shown in Figure 2(c) and denoted as 1 9~M M . In this paper we mainly focus on undirected 

three-node and four-node motifs. 

 

Figure 2. (a.) All the 13 three-node motifs in directed networks. (b.) The bi-parallel motif. This structure frequently shows 

up in the food chain network. (c.) The 2 three-node motifs and 6 four-node motifs in undirected networks. 

 

Motif has been widely accepted and researched, yet there are only a few researches about motif 

centrality. Piraveenan et al. [10] researched the four-node motif centrality on metabolic networks. 

They calculated the average node betweenness centrality and closeness centrality on four-node motif 

which appear frequently, and found that for some motifs, the average centrality of nodes on these 

motifs is much higher than the average centrality of global nodes. This result suggests that some 
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dominant motifs do play important roles, like hubs or gathering centers, which shows the potential of 

motif centrality. 

Generalizing the definition from node centrality, for motif m , the von Neumann entropy motif 

centrality can be defined as: 

( ) | ( ) ( ) |M

E E EC m S G S G m= − .                                                (3) 

Experiments 

To compare the von Neumann entropy motif centrality with other centralities including node 

centralities and other motif centralities, von Neumann entropy is used to measure the changes of 

networks and the efficiency of different centralities.  

 
Figure 3. The comparison of change in von Neumann entropy when deleting motifs or single nodes ordered by node 

centrality. The x-axis is the number of motifs deleted. The y-axis is ( ( ) ( ')) / ( )E E ES G S G S S G−  where 'S  is the 

nodes set deleted. When comparing the change of entropy, the same number of nodes is deleted from the original networks 

to keep the sizes of networks the same. We use ER, GEO and SFBA models to generate networks, and each network 

contains 200 nodes and 480 to 520 edges. The result in the figures is the average of 100 networks, and the results of von 

Neumann entropy motif centrality, node betweenness, node closeness and node degree centralities are drawn on the figure. 

(a. and d.) Changes of von Neumann entropy when deleting nodes or motifs in ER networks. (b. and e.) Changes of von 

Neumann entropy when deleting nodes or motifs in GEO networks. (c. and f.) Changes of von Neumann entropy when 

deleting nodes or motifs in SFBA networks. (a), (b) and (c) are changes of von Neumann entropy with three-node motifs 

and (d), (e) and (f) with four-node motifs. 

 

The changes of entropy variation for different centralities are plotted in Figure 4 and the 

Erdős-Rényi (ER), random geometric graphs (RGG) and scale-free Barabási-Albert random model 

(SFBA) [11] are used to generate networks. To compare the entropy variations, we keep the numbers 

of nodes deleted with highest BC , CC  and DC  to be the same with the number of nodes contained in 

the motifs deleted with the highest M

EC . As we could see, the results of three-node motif are quite 

similar to the results of four-node motif for the same network models, and the SFBA model performs 

more significant variations then other models. It is obvious that removing significant motifs could 

lead to larger changes in von Neumann entropy than removing the same number of significant single 

nodes. This suggests that the von Neumann entropy motif centrality is able to capture the topology 

information contained in the subtle structure which cannot be presented by classical node centralities, 

and there exists great potentials of von Neumann motif centrality in revealing the underlying topology 

structure of network. 
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Summary 

In this paper the node and motif centralities based on von Neumann entropy are discussed, which 

makes it possible to study the importance of nodes or motifs in the perspective of structural regularity 

and complexity. By comparing von Neumann entropy node centrality with classical node centrality, it 

is shown that the 
EC  is an all-round measurement of node importance, and can be applied to evaluate 

other node centralities, which is also performed in comparing von Neumann entropy motif centrality 

with other motif centralities. By comparing the changes of von Neumann entropy when deleting 

motifs with high M

EC  or nodes with high node centralities, it is concluded that the motifs have greater 

impact on the global networks than single nodes and von Neumann motif centrality can capture the 

significant structural patterns. 
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